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Abstract. In this paper we consider the problem of defining the asymptotic of the bankruptcy
probability in the case of large payments distributed under subexponential laws and defining an
admissible insurance rate for F-model case.
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Introduction

Classical risk theory assumes that large insurance claims and, therefore, large
insurance payments are rare, with exponentially small probabilities. This scheme is
called "model with small payments".

However, many situations are related to extreme events. Due to this fact, the true
size of payments is more adequately represented by random variables distributed with
"heavy tails", which include Pareto type distributions. Actually, in this case, total
payments will be defined by the maximal individual claim. This effect became
extremely noticeable at the beginning of the 2000s, when the insurance companies
had to refund significant amounts on insurance claims, conditioned by catastrophes:
earthquakes, fires, floods, terrorist attacks.

Suppose that we are in the classic problem of finding the probability of
bankruptcy ([1], 184-186, [2], [3]).. Let

) o, T) = P {U()<0 for some0<¢<T},0<t<o, u>0— probability of
bankruptcy on a finite time interval [O, T ], U(t) - the process of risk;

2) p(u) =p(u,o)= P {U(t)<O0 for some ¢ >0} — probability of bankruptcy on
an infinite interval.

To calculate the probability of bankruptcy it is comfortable to have a simple
analytical formulas for ¢(u) or ¢(u,T) that include probabilistic characteristics of

the insurance payments and process flow requirements for payment N(z). First, we
need the distribution function if F(x).

As a next step we will review the asymptotical behavior ¢(u#) when the initial
capital u arises and the distribution function F(x) amount of large payments satisfies
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some additional conditions.
However, it worth mentioning that the bankruptcy occurs only when the

payment claims 7, arise.
Will use the following terms and symbols: if F(x) - distribution function,

f(x) =1— F(x) the "tail" of the distribution F, and a F*" - n-fold convolution F.

So if F - distribution function of benefits, then F(x) - "tail" of the distribution,
and

1%
F(x) =;JF(y)dy, x>0,
0
called integrated "tail" of the distribution. [4 p.186]

The value of p :/Ii_l called the relative insurance premium and for the
¥
basic conditions:
C
P = E -1>0 (1)
we use the term "a net profit". In condition (1) @(u#) can be written as ([1], p.
187):

__P N g e
(p(u)—Han:O:(Hp) (A-F" (),

Additional conditions for F' provide us exponential estimations for ¢(u).

Cramer-Lundberg’s condition implies the existence of constants + called debug
(regulator, adjusting) ratio or Lundberg’s ratio, such that

ofe”‘(l—F()c))d)c:c//1:(1+,0),u, (2)
0

The distributions that do not satisfy the condition (2) will be called distributions
with "heavy tails" [1 p.188].

Bankruptcy probability for subexponential distributions.
Let’s assume that the distribution function F(x),xe R, =[0,00) satisfies the

condition F(x)<1 VxeR,.
Definition. Let’s call the distribution function F subexponential if for all n>2

limF_—(x) = limﬂ =n.
e F(x) e 1-F(x)
Class of subexponential functions will be marked as S. [1, p. 189].
Note that subexponential distributions were introduced by Chistyakov [4] in
context of theory of branching processes.
For further practical implementation of calculation of bankruptcy probability we
use the following theorem (see in particular [1, p. 197]).
Theorem. Consider Cramer-Lundberg model under the conditions p >0 and

F,(x) e S.Then
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()~ p~ F (), u = (3)

According to this theorem, in the case of payments which have distributions of

subexponential integrated "tails", the probability of bankruptcy allows a simple
approximation, given by the formula (3).

Note that the condition of the theorem formulated in terms integrated "tails"

instead of the distribution function F(x). Logical question arises: if F,(x)e S follows

from F(x)e S, or vice versa? General answer is — NO. Thus, there are defined

distributions for which we can calculate the bankruptcy probability.

Calculating the probability of bankruptcy for large payments

Consider the problem of calculating the probability of bankruptcy in the case of
"heavy tails", that is, when payments are large. Note that in the case of Pareto

[04
distribution with distribution function F(x) ﬂ—[ﬁj ,a>1,k>0x>0 and include the
X

log-normal distribution considered in [1, p.198-199].
Statements 1. When payments have Pareto distribution, that is :

F(x)=l—( j ,oa>1,k>0,x>0.
k+x
Then the asymptotic of bankruptcy probability ¢(u) is defined as:
/Ika —-a+l
u)~ k+u , U —> 0,
P o E )
Proof: The distribution density is:
ak
Jx) =
(k + x)
In this case, the mathematical value: y=EX, = ﬁ
a —
Then relative insurance premium:
-1
Au Ak c(a - 1) — Ak

If F(x) — a distribution function of payment amount, then F(x) — «tail» of this

distribution.
F(x):( k j , x> 0.
k+x

Since, the integrated “tail” of distribution:

=
F(x) = [F»)dy, x>0.
0

Then
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x x k a a(k+y)—a+l
Fydy=||—| dy=k"———
! 0 g[ﬂyj g —a+1

X _ka (k+x)—a+1 B k_aH ~
0_ —o+1 —a+1]

1=k ey ),

a J—
F(x)=1-k"(k+x)“" 5 1= F(x) =k (k+x) "
Therefore, bankruptcy probability asymptotic is defined as:
Ak“
u ~
P a1 -k
According Pareto distribution analysis it is obvious that this is a distribution
whose tail is heading to zero as x“ that leads to distribution with tail that is much
heavier than the exponential one. Let’s consider the right tails of this distributions:
1. Exponential P(X > x)=exp(—4x)
2. Pareto P(X >x)=(A/(A+x)%)

Consider:

(k+u)7a+l, U —> 0.

P(X > x)=exp(—cx"),y > 0.

Now we have two cases. Ify <1, then arises one more distribution that is
between Pareto and exponential distributions. At the same time in case y >1
the right tale 1s lighter then the exponential one(y =I1corresponds to
exponential distribution). This behavior of the tails definers the Weibull
distribution as very flexible and the one that can be used in insurance problems
for modeling losses(usually with y <1). Let’s consider the next statement for
the Weibull distribution.

Statements 2. Let payments distributed by Weibull distribution with a
parameter 0 < y <1, and the distribution function

F(x) :l—exp(—clxy), ¢, >0,x>0
then the asymptotic of probability of bankruptcy is given

T

1 1+

1 1
c-cly—/ll“(1+1} 7'r(1+j
A)L 4 i
Proof: Weibull distribution density:
f(x)=cyx" exp(—clx7 )

, U0, (4)

The mathematical expectation: = EX, = Ll : F(l + l}
/4

c}’

Then relative insurance premium:
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ll“(l + lj
- Y

Then X =7 1 N
c-cf —ZF(I +j
/4
The integrated distribution tail :

1 $—
F,(x):;IF(y)dy, x> 0.
0

Note that the integration boundaries are fixed in case of classical integral
definition of gamma function. Also it is considered an incomplete gamma function
that is defined by the same integral with variable upper and lower boundary. There is
also defined upper incomplete gamma function:

o0

T (a,z)= j e 'tdt

)

Then

jf(y)dy = [exp(—cy” )dy =
0

Remind that: T'(a,z) = J exp(—t)t*dt.

As s result it is obvious that for Weibull distribution the statement (4) is
executed.

Statement 3. Let payments distributed Benktander type I:

1- F(x)= (1 + mjx“““ﬁ ") o, f>0,x>1,
a

Asymptotic of probability of bankruptcy ¢(u) given by the following equation:

_a—flnx
go(u)~/1(a+1 s ),M—)OO.

ca—Ala+1)
Proof: The function of distribution and density are as follows:

F()C) —1 _(1 + ZﬂlnXJx(a+l+ﬁIHX) 05,,8 > O,X > 1’
o

fx)= (Kl 2 xj(l +a+28n x)} - %Jx_(z““ﬂl“).
a o
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Find the mathematical expectation: = EX = [xf(x)dx = a+l
1 o
We find p~' = AMa+1) :
ca—AMa+1)

Find the integrated "tail" of the distribution:
x—a—ﬂ Inx

1 *—
Fl(x)_;_([F(y)dy_ﬁ

Accordingly, the asymptotic of probability of bankruptcy is given by the
following equation:

= Ao +1-u Py

1

u)~p F;(u)~ , U —> 0,

(P() pF(u) co— Aa+1)

Statement 4. . Let payments distributed Benktander type II [1, p. 196]:
B

_ ) ax
l—F(x)—exp(—jx( exp{——}, a,>0,x>1,
B B
Asymptotic of probability of bankruptcy ¢(u) given by the following equation:
— A a au’
u)~p ' F (1)~ exp| — |exp| —— |, u > .

Proof: The function of distribution and density are as follows:
B

F(x) :l—exp(%jx_(l_ﬁ) exp{_ofgx }, a,f>0,x>1;

f(x)=exp (%j(l - B)-x"7 exp{_ozcﬁ } + exp(%) ax*’? exp{_ol;xﬂ }

. : 1+
Mathematical expectation: y=EX, = e
a

C ca
Then: p=——1=—% __150.
T a(ra)
Au l(1+0{)

A It: p' = = .
saresull: p (c—Au) (ac—ﬂ(1+a))

Thus, if F(x) — distribution function of payment amount, then F(x)— tail of this
distribution

_ a X ax? exp il x 17 exp _a_xﬁ ,x>1,
F(x)= exp[zjx( #) expy — 5 = p p
I,x<I.
Find the integrated "tail" of the distribution:

1=
Fl(x) :;_[F(y)dy, x>0.
0
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.x > 1. /

As a result we get:

a
exp() p
p ax
F(x)=1-——"% -
1(x) exp{ 8 }

(1+a)

a
_ eXp(j B
F,<x>=1—F,(x)=ﬁexp{%}

Accordingly, bankruptcy probability asymptotic is given in next way:
— A a au’
-1
u)~p F,(u)~ exp| — |exp| —— |, u > .
serr Bty 5 o -

Defining asymptotic of admissible insurance rate in case of F-model

Important moment of insurance mathematics is a definition of insurance fee that
provides us with non-bankruptcy probability under some conditions. Also, interesting
thing is that payments might be big enough being described by distributions with
heavy tails. Asymptotical behavior of optimal insurance rate as found in case of big
payments and factorization model (F-model) conditions [7].

If u,1s a starting capital, then the final insurance fund is:

U=M0+Z—Y (5)

The first problem related to (5) is definition of distribution asymptotic of
random variable U in case if z is known.

Second problem — is defining a minimal value for z that will provide us with
acceptable results of insurance practice for that particular insurance portfolio. These
particular problems are considered in [8].

In particular it follows from [8] that in case of big payments, that have Pareto
distribution with such a > 0,4 >0 parameters that :

F(x)zl—(i)“,x>0,
A+x

z, - admissible insurance rate satisfies next relation:

al’ 241/2
o +J(a_l)z(a_z)[lw] ¥(Q)

0 Cl—l [N_VZ\PZ(Q)]I/Z

See details in [8].
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Conclusion

Problem of bankruptcy probability definition in case of heavy tails has been
considered. Asymptotic of bankruptcy probability in case of payments with Pareto,
Weibull, Benktander type I and II distributions have been defined. As a result we
received asymptotic of admissible insurance rate in case of F-model for relational
claims with Pareto distribution.
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Anomauia. Po3zensanymo 3a0a4y 3HAX00HCEHHS ACUMNIMOMUKU LLMOBIPHOCME OAHKPYMCmEa y
6una()i<y 6EIUKUX sunjiam pOS’I’lO()iﬂ@HuX 3a Cy6€KCI’lOH€HL;ilZHMMM 3dKOHAMU md 6U3HAYEHHA
ONMUMANLHOI CMPAX080i CMABKU.

Knrouosi cnosa: acumnmomuxa umMosipHoCmi 6AHKPYMCmMea, 8axicKi Xe0cmiu,
cybexcnonenyitini po3nodinu, F-mooenv, onmumanvra cmpaxosa cmaska.
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